Math cheatsheet

less than 1 minute read

Calculus

Product Rule \(\left( uv \right)' = u'v + uv'\)
Quotent Rule \(\left( \frac{u}{v} \right)' = \frac{vu' - uv'}{v^2}\)
Chain Rule \(\frac{d}{dt}\left[ u\left( v(t) \right)\right] = u'(v(t))v'(t)\)
Integration by Parts \(\int u dv = uv - \int vdu\)

Useful derivatives

\(\frac{d}{dt}t^n\) \(=\) \(nt^{n-1}\)
\(\frac{d}{dt}e^t\) \(=\) \(e^{t}\)
\(\frac{d}{dt}ln(t)\) \(=\) \(\frac{1}{t}\), \(t > 0\)
\(\frac{d}{dt}ln(u(t))\) \(=\) \(\frac{u'(t)}{u(t)}\)
\(\frac{d}{dt}sin(t)\) \(=\) \(cos(t)\)
\(\frac{d}{dt}cos(t)\) \(=\) \(-sin(t)\)

Trig Identities

\(\tan \theta\) \(=\) \(\frac{\cos\theta}{\sin\theta}\)
\(\sin^2 \theta + \cos^2 \theta\) \(=\) \(1\)
\(\sin \frac{\theta}{2}\) \(=\) \(\pm \sqrt{\frac{1 - \cos\theta}{2}}\)
\(\cos \frac{\theta}{2}\) \(=\) \(\pm \sqrt{\frac{1 + \cos\theta}{2}}\)
\(\tan \frac{\theta}{2}\) \(=\) \(\frac{1 - \cos\theta}{\sin\theta}\)

3-space vectors

Multiplying unit vectors: \(\begin{align} \hat{i}\hat{j} &= -\hat{j}\hat{i} = \hat{k} \\ \hat{j}\hat{k} &= -\hat{k}\hat{j} = \hat{i} \\ \hat{k}\hat{i} &= -\hat{i}\hat{k} = \hat{j} \end{align}\)

Given two vectors: \(\begin{align} \hat{a} &= a_0\hat{i} + a_1\hat{j} + a_2\hat{k} \\ \hat{b} &= b_0\hat{i} + b_1\hat{j} + b_2\hat{k} \end{align}\)

The cross product is given by: \(\begin{align} \hat{a} \times \hat{b} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \end{vmatrix} \\ &= (a_1b_2 - a_2b_1)\hat{i} + (a_2b_0 - a_0b_2)\hat{j} + (a_0b_1 - a_1b_0)\hat{k} \end{align}\)

Quadratic formula

\[\begin{align} x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \end{align}\]