Math cheatsheet
less than 1 minute read
Calculus
Product Rule |
\(\left( uv \right)' = u'v + uv'\) |
Quotent Rule |
\(\left( \frac{u}{v} \right)' = \frac{vu' - uv'}{v^2}\) |
Chain Rule |
\(\frac{d}{dt}\left[ u\left( v(t) \right)\right] = u'(v(t))v'(t)\) |
Integration by Parts |
\(\int u dv = uv - \int vdu\) |
Useful derivatives
\(\frac{d}{dt}t^n\) |
\(=\) |
\(nt^{n-1}\) |
\(\frac{d}{dt}e^t\) |
\(=\) |
\(e^{t}\) |
\(\frac{d}{dt}ln(t)\) |
\(=\) |
\(\frac{1}{t}\), \(t > 0\) |
\(\frac{d}{dt}ln(u(t))\) |
\(=\) |
\(\frac{u'(t)}{u(t)}\) |
\(\frac{d}{dt}sin(t)\) |
\(=\) |
\(cos(t)\) |
\(\frac{d}{dt}cos(t)\) |
\(=\) |
\(-sin(t)\) |
Trig Identities
\(\tan \theta\) |
\(=\) |
\(\frac{\cos\theta}{\sin\theta}\) |
\(\sin^2 \theta + \cos^2 \theta\) |
\(=\) |
\(1\) |
\(\sin \frac{\theta}{2}\) |
\(=\) |
\(\pm \sqrt{\frac{1 - \cos\theta}{2}}\) |
\(\cos \frac{\theta}{2}\) |
\(=\) |
\(\pm \sqrt{\frac{1 + \cos\theta}{2}}\) |
\(\tan \frac{\theta}{2}\) |
\(=\) |
\(\frac{1 - \cos\theta}{\sin\theta}\) |
\[\begin{align}
x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
\end{align}\]